Loading...
Factoring
A
B
C
D
E
F
G
. . . .

Factoring Special Products

Sums or Differences of Two Cubes
A sum or difference of two cubes can be expressed as a product of a binomial and a trinomial as shown below.

x 3 + y 3 =( x+y )( x 2 xy+ y 2 )
x 3 y 3 =( xy )( x 2 +xy+ y 2 )

Example

Factor each polynomial completely.

1. 8 a 3 +27
2. r 3 t 3 64
3. b 3 +125 c 6

Solution
1. 8 a 3 +27
= ( 2a ) 3 + 3 3
=( 2a+3 )
[ ( 2a ) 2 ( 2a )( 3 )+ ( 3 ) 2 ]
=( 2a+3 )( 4 a 2 6a+9 )

2. r 3 t 3 64
= ( rt ) 3 4 3
=( rt4 )
[ ( rt ) 2 +( rt )( 4 )+ 4 2 ]
=( rt4 )( r 2 t 2 +4rt+16 )

3. b 3 +125 c 6
= b 3 + ( 5 c 2 ) 3
=( b+5 c 2 )
[ b 2 ( b )( 5 c 2 )+ ( 5 c 2 ) 2 ]
=( b+5 c 2 )( b 2 5b c 2 +25 c 4 )